Analytic Functions*

Piotr Nayar, kolokwium II

Zasady: Trzeba wybrac 5 zadan i zaznaczyc, ze maja one liczyc sie do wyniku z kolokwium. Pozostale zadania tez mozna rozwiazac. Kazde takie zadanie policze jak 3 zadania na pracy domowej. Mozna korzystac z wlasnych notatek i materialow na moodlu, ale nie mozna szukac informacji w internecie.

Zadanie 1.

(a) (5p.) Find an explicit holomorphic bijection from $\{\operatorname{Im} z>0,|z|<1\}$ onto $\{|z|<1\}$.
(b) (5p.) Find an explicit holomorphic map from $\{|z|<1\}$ onto $\{0<|z|<1\}$.

Zadanie 2.

(a) (8p.) Let f, g be entire and satisfy $e^{f}+e^{g}=1$. Does this imply that f, g are constant?
(b) (2p.) Let f, g, h be entire and satisfy $e^{f}+e^{g}+e^{h}=1$. Does this imply that f, g, h are all constant?

Zadanie 3. Suppose $\left(a_{n}\right)$ is a sequence of complex numbers such that $\left|a_{1}+\ldots+a_{n}\right| \leq 1$ for all $n \geq 1$. Show that $f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ defines an analytic function in $\{\operatorname{Re} s>0\}$.

Zadanie 4. Find all entire functions f having finite order of growth and such that $f(z) f^{\prime}(z) \neq 0$ for all $z \in \mathbb{C}$.

Zadanie 5. Suppose f is entire and satisfies $f(z+2 \pi i)=f(z)$ for all $z \in \mathbb{C}$. Moreover, let us assume that f has finite order of growth. Show that $f(z)=g\left(e^{z}\right)$ for $g: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ of the form $g(z)=\sum_{k=-n}^{n} a_{k} z^{k}$, where $n \geq 0$ and $a_{k} \in \mathbb{C}$ for $|k| \leq n$.

Zadanie 6. Suppose $P(z)$ is a nonzero polynomial. Show that $e^{z}+P(z)$ has infinitely many zeros.

Zadanie 7. Prove the identity

$$
\frac{\sin \pi z}{z(1-z)}=\prod_{n=1}^{\infty}\left(1+\frac{z-z^{2}}{n^{2}+n}\right)
$$

Zadanie 8. For τ with $\operatorname{Im} \tau>0$ let $\wp=\wp(z ; 1, \tau)$ be the Weierstrass function with periods $1, \tau$.
(a) (3p.) Show that $\wp^{\prime \prime}=Q \circ \wp$, where Q is some complex quadratic polynomial.
(b) (7p.) Show that every even meromorphic function with periods $1, \tau$ is of the form $R \circ \wp$, where R is some rational function.

